The Point of Origin:
Santa Cruz, 1973

I was asked recently, “how did you get interested in this subject?”

This is where the story begins, on a bluff overlooking the Pacific Ocean near Santa Cruz California, on a warm afternoon in the late summer of 1973.

The Sony “PortaPak” ca. 1970. All that fits in your pocket now.

I had graduated from a branch of Antioch College near Baltimore, Maryland, in the spring of 1973.  In the course of what passed for my higher education – in between all the joints I rolled and smoked – I was one of an emerging global cadre of long-haired, hippie-radicale “video guerillas.”  My classmates and I  experimented with a new media paradigm, using the very first portable video recorders – the Sony Porta-Pak – to create programming for public access on cable TV.   

Our text book through that era was periodical out of New York called “Radical Software.” 

The 8th edition of Radical Software was published in the spring of 1973, just before I graduated from Antioch. That issue was dubbed the “VideoCity” edition” because – as I learned within its pages    electronic video was invented there in the 1920s.  

And that’s where first I encountered a name which would ultimately become a primary preoccupation of my adult life: Philo T. Farnsworth.  

Cover of the “VideoCity” edition of “Radical Software” ca. 1973

It was in these pages that I first learned of the 14 year old farm boy with the cartoon-character name who figured out in 1921 how to bounce electrons around in a vacuum tube in order to transmit moving pictures through the air.  I learned about his struggles to perfect his invention and his fights with RCA over his patents. I saw images of a pre-history I had never seen before, and wondered then, as I still wonder now, why is his name not more familiar and why his story is not more frequently told. 

After barely qualifying for a Bachelor’s degree (did I mention that I majored in joint-rolling?), I packed my guitar, a 35mm camera, a pair of hiking boots and a few changes of underwear into my Volkswagen Sqareback and spent the better part of the month of August driving across the country, intending to seek my fortune in the actual TeeVee industry in Hollywood.  

When I arrived in Los Angeles at the end of August, I joined up with Tom Klein, my former college roommate, who was a native of LA, and we started working on some public access video projects out of Santa Monica. 

Sometime in mid-September Tom and I took a little road trip up the California coast, to meet a fellow video guerilla  who ran the public access cable channel in Santa Cruz and went by the assumed persona of “Johnny Videotape.” I have no recollection of this character’s actual name, so for the purposes of this story, we’ll just call him “Johnny.” 

“Johnny” knew a fellow named Phil Geitzen, who had edited that “VideoCity” edition of Radical Software.  And Geitzen was acquainted with Philo T. Farnsworth III – the oldest son of the Philo T. Farnsworth who had invented television, who had died in 1971, just a couple of years before all of this was happening.   

Johnny and Tom and I went on a little hike through the Santa Cruz mountains, and stopped on a bluff overlooking the Pacific Ocean. 

As the the three of us sat on a large rock amid the scuffy California brush, Johnny regaled us with stories that Phil Geitzen had heard from Philo T. Farnsworth (the third) about Philo T. Farnsworth (the second).  

And it was there, on this hillside in Santa Cruz, looking out at the blue horizon in the late summer of 1973 that I first heard the expression “nuclear fusion.” 

At a time when conventional nuclear power – what the Eisenhower era reverently extolled as “Atoms for Peace” – was just beginning to encounter  cultural push back for its freshly perceived dangers – in other words, during the time when the expression “meltdown” was just beginning to enter the lexicon – I learned about the most fundamental force in the entire universe. 

Johnny explained that “fusion” is the opposite of the more familiar “fission” that burns in the core of conventional nuclear power plants.  

Albert Einstein, God’s resident mathematician

Fission splits heavy atoms like Uranium or Plutonium into lighter atoms; the combined mass of the split-off, lighter atoms is less than the mass of the original,  heavier atoms, and that difference in mass is released as energy in accordance with Einstein’s famous formula, E=MC2.  

For the record, fission does not exist anywhere in nature; its presence here on Earth is an entirely human fabrication. 

Fusion, on the other hand, is the most natural and common phenomenon is the entire universe.  Fusion is the process burning within our sun and every star in the heavens. 

It seems as if God, when he got bored being God all by himself and set about to create a Universe that could provide some companionship, when he was sifting around for a way to “let there be light,”  he actually started with the idea of fusion.  

In The Beginning… 

God must have said to himself, “First I’ll create hydrogen.  Easy.  One proton, one electron.  Then I’ll add a neutron.  Then I’ll take two of these hydrogen atoms and press them together into an entirely new element. The result will be all the heat and light I need to create an entire universe!  

God clapped his big hands together, and the universe went “bang.” 

That’s all God had to do.  Create hydrogen atoms in infinite abundance and then hang gigantic balls of hydrogen thoughout his new Heavens, compressing those balls of gas with the gravity of their own mass until the atoms fused together into a second element and presto: there was light, and there was heat. 

And God saw that it was good.

Some 14 billion years later, human scientists would name that second element “helium” and a Jewish patent clerk in Germany would calculate the awesome amount of energy released in its forming in the most famous mathematical equation ever written. 

Over eons the stars did the rest of the work: forging an entire atomic chart of other elements, and then condensing those elements into planets. Over the course of several billion years (which might seem a mere six or seven days to a cosmic diety…)  that process would eventually, produce organic, carbon based “life” forms that could carry and transmit that same energy.  

God finally had himself some company, and on the seventh day he threw a party. 

Look out at the night sky, and all you see, as Carl Sagan might have put it, are billions and billions of deep space fusion reactors.  Along with sex, fusion energy is the most natural creative force in the Universe.  

*

OK, back to that bluff overlooking the Pacific in the late summer of 1973. 

Planet Earth: deep space refueling station for fusion-powered spacecraft throughout the Galaxy.

Fusion, as Johnny had learned from Phil Geitzen, as Geitzen had learned from Philo Farnsworth III, offers mankind the promise of a clean and (relatively?) safe source of industrial energy from a virtually infinite fuel source.  The hydrogen isotopes in sea water – the most abundant resource on Earth – store enough fusion fuel to power advanced civilizations for millions of years.  And even though fusion is an atomic reaction, it presents none of the hazards or toxic byproducts that fission plants produce. 

Johnny Videotape explained to Tom Klein and I that modern science has been trying to harness this fusion energy for useful purposes here on Earth for several decades – the obvious assumption being that if we can harness fission to generate electricity, then surely we can harness fusion toward a similar end. 

Or maybe not?

Science has figured out how to harness the very unnatural process of fission into both controlled and explosive devices.  The controlled devices are all those nuclear power plants, all those Three Mile Islands, Chernobyls and Fukushimas – all those meltdowns waiting to happen, and all that radioactive garbage that nobody knows what to do with.  The explosive devices, well, that’s Trinity and Hiroshima and Nagasaki.  

Uncontrolled nuclear fusion

The only fusion devices mankind has managed to perfect are the explosive ones.  The hydrogen bomb.  The monster of incineration that its architect, Edward Teller, liked to call “The Super.”   Great for wiping out entire cities; not so great for powering them. 

A controlled fusion reaction, one that could produce the same megawatts of electricty that we can get out of a conventional nuclear power plant?  That has proven much more difficult to deliver. 

Because: As a heavenly star is a fusion reaction, so an earthbound fusion reaction is an artificial star – and thus presents a cosmic riddle:   

How do you bottle a star?  

Controlled nuclear fusion

What sort of vessel can you create that is capapble of containing a seething atomic inferno as hot as the sun?  What sort of container could withstand such heat without disintegrating?  Conversely, what sort of bottle could contain a star that would not ultimately extinguish the star simply by coming in contact with it? 

That is the quandary that Johnny Videotape presented that warm  afternoon on a bluff overlooking the Pacific Ocean in Santa Cruz, California in the summer of 1973.

And the reason Johnny was telling us all this was because he  had learned from Phil Geitzen, who had learned from Philo T. Farnsworth III, that Philo T. Farnsworth II – the man who as a boy had invented television – had spent the final decades of his life solving the riddle! 

Philo Farnsworth had figured out how to bottle a star. 

Now the story becomes rather apocryphal.  Here is the story Johnny told, as I recall it 46  years later: 

This is how you bottle a star.

Picture Philo T. Farnsworth working alone in a makeshift basement  laboratory.  

In the doorway, his young son reverently stands by and watches as his father fires up his fantastic ‘star-making machinery.’  Before their eyes, the unthinkable materializes:  the artificial star.  

Together they watch the vibrant, shimmering light, and a knowing gaze passes between father and son.  

When he is satisfied that he has done all that he can do and seen all he needs to see, the father shuts off the machine – and begins to dismantle it.  

He removes a critical piece from the machine, and places it on a high shelf somewhere in the lab where nobody will ever find it – so that the machine will never operate again.  

And then he takes the secret to his grave. 

That story landed like a harpoon in my heart.  

I am hooked on it still.  

And that is why the website fusor.net has been around for more than 20 years.

And why I have been telling this story to anybody who’ll listen for nearly 50 years.

It’s an odd obsession, to put it mildly.

*

Two years after that afternoon in Santa Cruz,  I tracked down the family of Philo T. Farnsworth.  

In the pursuit of the fortune that had lured me to Hollywood, I had landed on the idea of making “a movie for television about the boy who invented it.” 

That project has its own curious origin-and-dead-end story; That the most effective story-telling medium ever devised has yet to tell the story of its own fascinating origins remains its own bizarre mystery.

Pem Farnsworth, ca. 1977, at the dedication of the historic monument at 202 Green Street, where electronic video made its first appearance on Earth on Sept 7, 1927.

For now, suffice it to say that in July of 1975 I  flew to Salt Lake City, where I was greeted in a modest-but-cluttered home by Philo Farnsworth’s widow Pem and two of her skeptical sons – the oldest, the aforememtiomed Philo T. Farnsworth III, born in 1929, and Kent, the youngest who was roughly my age.  That trio of Farmsworths were the primary keepers of the family treasures (they are all deceased now). 

Over the course of the next two days – and the next several years – I began to learn the untold story of the true origins of electronic video, and of the titanic struggles that accompanied its arrival in the world during the 1930s.  

And over the course of those years Philo T. Farnsworth III became one of my best friends.  

There are so. many. stories.  I wish I had time to tell you the story of “The Prince, The Inventor, and The Egg.”  I can only say now that Philo was one of the most unique individuals I have ever had the privilege of knowing until his untimely death in 1987. 

Philo possessed unique insights into his father’s legacy.  Though P3 (as he was often called) lacked his father’s mathematical prowess, he was an inventor in his own right and offered me keen insights into the inventive process that inform my own work to this day. 

But in those first encounters, it became readily apparent that the entire family, and Philo III in particular, were fervently protective of their father’s legacy, and from the outset quite reluctant to discuss the fusion research – the star in a jar – that consumed the final decades of his father’s life.

But over time, time I would earn the family’s trust and learn the truth underlying that apocryphal story. 

Philo T. Farnsworth III ca. 1972

As we got to know and become comfortable with each other, I finally got around to telling Philo the story that Johnny Videotape had told me, the story that he had heard from Phil Geitzen that Phil Geitzen had supposedly heard from the lips of this very same Philo Farnsworth III.

Philo chuckled. 

The story, he said, was indeed apocryphal, and perhaps a bit broadly drawn.  The details were well off – Philo III was hardly a child, he was in his mid 30s during the years when his father was experimenting with fusion.  But he also confirmed its essence when he said, simply, that “the patents are incomplete.” 

Think of a patent as a text book.  A well written patent should instruct somebody skilled in the underlying arts how to build the novel device disclosed therein.  But if critical details are left out of the patent, even the most skilled practitioner will be building a device that falls short of its intended purpose. 

Schematic of the Farnsworth Fusor from US Patent # 3386883.  Something is missing…

In other words, filing an incomplete patent is much like taking a critical piece out of the machine and placing on a high shelf where nobody will ever find it. 

Philo first told me about those incomplete patents sometime in the mid 1970s. But it was another 15 years before  Pem Farnsworth, who had been at her husbands’s side during all the important moments in his career, would confide in me the story that is the climax of his biography.

In the summer of 1989, I returned to Salt Lake to help Pem and youngest son Kent put the finishing touches on “Distant Vision” – the memoir that Pem had begun writing when I first met her in 1975.  

And when we got to the “second chapter” – the decade devoted to fusion energy research – Kent and I could both tell that Pem was withholding something,  a critical detail she was reluctant to divulge. 

Finally, we sat Pem down with a cassette recorder and coaxed from her the story of a night in 1965,  when Philo brought her back to his laboratory that was, in fact, in a basement in Fort Wayne Indiana.  Once past the night watchman and settled in behind the controls, Farnsworth opened the electrical ciruits feeding the reactor and adjusted the controls.  And then the strangest thing happened: he withdrew the electrical current, and the reaction just kept on going.  

Pem and Philo watched as the needles in various gauges pinned at the limits.  And when the needles finally settled down, Pem told us that her husband turned to her and said, “I have seen all I need to see…” 

Weeks later, he filed the patents that his son descibed to me as “incomplete.” 

It is quite common when reading of contemporary fusion research to encounter the skeptical caveat that “fusion energy is 20 years in the future and always will be…” 

But I have met the family of Philo T. Farnsworth – the man who, as a boy, arrived on this planet with the unique insights that delivered electronic video to the world.  I have looked them all in the eye and I have seen and felt the abiding reverence they hold for the legacy they are protecting and the secrets that Philo T. Farnsworth took to his grave.

And I share their conviction:  fusion energy is not 20 years in the future.

The path to fusion energy was found  50 years ago and we missed it. 

– – – – – – – – – – – – – – – – – – – – – – –

Above, “Star Mode” in one of the many amateur and student science projects that have kept Farnsworth’s approach to fusion alive for the past 20 years.  This work has been fostered by Fusor.net – a website I created in 1998.

Read: The Waterstar Manifesto

“This is the good part of my theories. You must continue this work.” –Albert Einstein – despondent after Hiroshima and Nagasaki – to Philo T. Farnsworth in 1948

“I’ve seen all I need to see.” Philo T. Farnsworth – to his wife after conducting a clandestine, late-night fusor ‘run’ in 1966

“We were close.  We were very close.”  – Eugene Meeks, Farnsworth colleague, in 2001

The Waterstar Project seeks build an endowment to fund the recovery of a promising approach to controlled nuclear fusion that was abandoned more than fifty years ago.

1. Introduction:

Controlled Nuclear Fusion has been a Holy Grail of modern science for more than 80 years.  Utilizing the same reaction found in our Sun and all the stars, controlled fusion offers the promise of a clean, (relatively) safe, and inexhaustible source of industrial energy derived from the Earth’s most abundant resource: seawater.

But first the process must be harnessed here on Earth.

The concept presents a tantalizing scientific riddle:  how do you bottle a star? Continue reading “Read: The Waterstar Manifesto”

The Future’s So Bright…

… we really are going to need shades…

Imagine being dropped into the middle of an episode of “The Big Bang Theory.” Then imagine taking LSD. Then imagine that the episode runs for like 12 or 14 hours…

Now you’ve got some idea what this past Saturday was like for me…

The occasion was the 26th annual gathering of HEAS – The High Energy Amateur Science group – a loose-nit gang of high voltage, radiation, and fringe science enthusiasts from all over the country who gather at the home and lab of Richard Hull in Richmond Virginia to talk gizmos.

This was my fourth or fifth time attending this event, but even so I felt woefully “out of my league.” I attended because this is the best chance I have every year to visit with the people who inhabit Fusor.net – the site I started back in 1998 to foster discussion among people who are interested in Philo T. Farnsworth’s approach to nuclear fusion.

I felt out of place, but there I was…

I think the tone of the weekend was set early on, when I was chatting with an 18 year old from Seattle named Noah Hoppis, who pulled a small – wait for it – geiger counter! out of his pocket.  He proceeded to explain how it works, how he got it, what he does with it, etc.

Noah was there with an older friend of his family, a woman named Linda who lives in the area and was providing transportation for the weekend.  I watched as Linda’s eyes glazed over, and at one point she said, “I understand all the individual words, but once he starts stringing them together…. he loses me.”

Which is pretty much how I felt the entire day.

I am at best marginally conversant in these questions of advanced science and physics.  Remember, I’m the guy who basically got flunked out of physics in high-school because I was a pain in the ass for the teacher.  That was in the 11th grade, and I spent the semester in the principals office pulling wires out of an early kind of computer circuit board.  The symbolism is pretty rich…

Despite my failure in any kind of academic scientific pursuit, I have some capacity for staying tuned in long enough to get a sense of the big picture, and maybe even some talent for distilliing the Broad Concepts into language that the average reader can comprehend.  I’ve done it in two books, and occasionally somebody will tell me “you said that pretty clearly” or words to that effect.  I smile and think to myself, “fooled ‘em again…”

So I spent the first two hours being a million miles – light years? – out of my comfort zone… thinking, “I have no business being here.”

After a few hours of that, I finally settled down and got my camera out and started taking some pictures.

First, here is Richard Hull himself, as his fusor runs on the apparatus around him.  Just over his left shoulder is the fusion chamber itself, and over his right shoulder is the video image of the actual “star in a a jar” reaction inside that chamber:

OLYMPUS DIGITAL CAMERA

Now, of course, the reaction that Richard has created is pretty “low yield.”  1-2 million neutrons emitted per second may sound like a lot, but that level is safe to be in the same room with.  Exponentially, that yield is expressed as 1x10E6 (1 times ten-to-the-sixth) “Breakeven” for a system like this is predicted to occur somewhere between 10E12 and 10E14. Let me do the math for you: that would be somewhere between 10 and 100 TRILLION neutrons per second.  We ain’t there yet.

But fear not.  Here’s my favorite single photo of the weekend:

OLYMPUS DIGITAL CAMERA

This is Scott Moroch and Jack Rosky, two students at a high school in Wayne New Jersey who are building – yes – their ow nuclear fusion reactor.   What Scott is holding in his hand is a model of the fusion chamber they plan to build that they rendered in a 3D printer. The model is plastic, the real thing will be stainless steel (and considerably larger).  Now THAT’s using new technology to create new technology…

Finally, my favorite demonstration of the weekend:

OLYMPUS DIGITAL CAMERA

….where in Robert Tubbs looks on and assists as Dr. Kevin Dunn from the Hampton-Sidney College in Virginia demonstrates a form of “Caveman Chemistry” – namely a prehistoric chemical process called “fire.”

Conducted in the presence of the Fusor, it’s an intriguing juxtaposition of “Fire Version One” with “Fire Version 2.” Kevin made the point that “civilization” essentially begins with the discovery and control of “Fire v1.0” What becomes of “civilization” if/when we finally control “Fire v2.0”?

And, not surprisingly, it is no easy feat to make fire from two pieces of wood. It takes some coordination to rapidly and repeatedly pull the bow back and forth to spin the spindle while pressing the spindle down against the second piece of wood.   It takes a bit of practice and perseverance to get the hang of it.

And I’m sure that, back at the beginning of time, there was one caveman telling the other caveman, “fire from two pieces of wood?!? That’s NEVER gonna work!”

And yet…

Watching these young guys try their hand at making fire – and knowing that they would go home to resume their efforts to build and operate a fusion reactor, I came up with this new rule: You’re not aloud to make “nuclear fire” until you have demonstrated that you are capable of making “carbon fire.”

You know, first things first…

 

OK, I Want To Have THIS Discussion NOW

by Paul Schatzkin
October 1, 2015

What’s wrong with this picture?

These Titans of Tech are investing HUNDREDS of millions of dollars on nuclear fusion experiments.  Why not invest a few million into the most proven, cost-effective means of generating a fusion reaction demonstrated in the past 50 years?
These Titans of Tech are investing HUNDREDS of millions of dollars on nuclear fusion experiments. Why not invest a few million into the most proven, cost-effective means of generating a fusion reaction demonstrated in the past 50 years?

Tomorrow (Friday, October 2) I will be driving from Nashville up to Richmond, Virginia for the annual gathering of the HEAS – the High Energy Amateur Science club.  This loosely-configured assembly of dedicated science nerds has gathered on the first Saturday of every October for 25 years now – this year will be the 26th.  The event attracts people from all over the country who come to demonstrate and talk about the amazing things they are building in their basements and garages, many of them exploring the most esoteric areas of high voltage  phenomena worthy of the likes of Nikola Tesla.

Richard Hull at HEAS 2011, Fusor IV on the workbench behind him.
Richard Hull at HEAS 2011, Fusor IV on the workbench behind him. (click to embiggen)

This will be my fourth or fifth excursion to meet up with this unique tribe of real-life characters from The Big Bang Theory.  It is held each year at the home and laboratory of Richard Hull, who also happens to be one of the world’s foremost authorities on Tesla, the amazing Tesla Coil, and what Tesla did or did not actually doin his lifetime (apart from the vast mythology that has formed around the cult of his personality in the past decade or so).

I first met Richard back in 2000, after I tacked some information about the Farnsworth Fusor to the end of The Farnsworth Chronicles, which I had posted as as sidebar to “songs.com” – the Internet music site I started in 1995. Once I’d discovered I had the ability to “self publish” whatever I wanted to the web, I scanned and uploaded the Farnsworth biography I’d had lying fallow since the 1970s. At the end I wondered if there was anybody out in the worldie-wide-web who might be interested in the work that Philo Farnsworth – you know, the guy who invented television (I know, you probably didn’t know…) – did in the last two decades of his life.  In the 1950s and 60s, Farnsworth invented a novel approach to nuclear fusion – the same process that drives the sun and stars.

Fusion was then and is now still the holy grail of modern science. Given its history, it’s no surprise that a vast array of skeptics insist that the promise of fusion as the solution to our energy needs (and now pollution-generated climate change) is something that is “twenty years in the future and always will be…”

Now the question  – and the discussion I want to have – is: did Philo Farnsworth find a viable approach to energy generation through nuclear fusion some fifty years ago? And if so, why aren’t we living in the fusion-powered future NOW?

The "star in a jar" - the actual fusion reaction in Fusor IV
The “star in a jar” – the actual fusion reaction in Fusor IV (click to embiggen)

When Richard Hull and I first started to confer with each other, he was just beginning to build his first fusor, spurred on by a fellow named Tom Ligon who was a disciple of another fusion researcher, the late Robert Bussard, who had was developed his own version of the Farnsworth process called the Polywell.  Richard has since been the de-facto leader of the tribe, the most active and consistent participant in the growing, global community that is Fusor.net.

Over the course of the ensuing decade and half, what started out as a simple forum in one of the earliest online bulletin board formats has grown through several iterations into fusor.net – behind which lies a vast database of knowledge compiled by hundreds of people around the world who are experimenting with their own variations of Farnsworth’s invention.  Between them, these (mostly) “amateur” (in the best possible meaning of the word) scientists produce  on a daily basis more actual nuclear fusion than all of the expensively funded experiments being conducted at the behest of governments, corporations and institutions around the world combined.

Robert Hirsch and Bill Blaising with the original "Dessert Cart" fusor, ca. 1964 (click to embiggen)
Robert Hirsch and Steve Blaising with the original “Dessert Cart” fusor, ca. 1964 (click to embiggen)

But here’s the thing: this cadre of “fusioneers” – uniquely accomplished as they are, and in spite of the vast trove of knowledge they have helped assemble over the years – are not really experimenting with the Farnsworth Fusor.  They’re experimenting with what I call the “Hirsch/Meeks Variation” of the Farnsworth Fusor.  This simplified version of the Fusor was first built  by colleagues of Farnsworth’s in the mid 1960s.  Robert Hirsch and Gene Meeks built their version of the fusor on a dessert cart – so that it could  be wheeled in to a meeting of the Nuclear Regulatory Commission in order to demonstrate Inertial Electrostatic Confinement.  These events are well documented in the latter chapters of my book, “The Boy Who Invented Television.”

It is this “dessert cart” fusor that the Legion of Fusioneers are building in their basements and garages.

The simple fact of the matter is that nobody has built or tested an actual “Farnsworth Fusor” in more than 50 years.  Think of how far technology has come in those five decades. Imagine a Fusor with computerized controls…

And now we read that the Titans of Tech – innovators and digital industrialists who have amassed unimaginable fortunes over the past three decades – are investing hundreds of millions of dollars into a whole new array of fusion concepts:

America has six private-sector fusion projects underway, according to a new report by the research firm Third Way. PayPal co-founder and Silicon Valley investor Peter Thiel has backed Helion Energy of Redmond, Wash.  Microsoft  co-founder Paul Allen has put money behind Tri ­Alpha Energy in Irvine, Calif., which has reportedly raised $140 million. And Bezos Expeditions, the investment fund of Amazon  CEO Jeff Bezos, is backing a Vancouver company called General Fusion, which so far has raised $94 million.

Gene Meeks and an actual Farnsworth Fusor, ca. 1963
Gene Meeks and an actual Farnsworth Fusor, ca. 1963

But the undeniable fact is: none of the approaches to fusion that any of these Tech Titans are funding is anywhere near as simple or elegant as the device that Philo Farnsworth first created in the late 1950s.

In 2001, I got to spend some time with Gene Meeks, the co-creator of the Hirsch Meeks Variation.  Gene was as close to the critical work in the Farnsworth laboratory as anybody, and spoke in guarded terms about his experience.  But when pressed on the subject, Gene finally spoke wistfully of a fusor iteration called “Prime II” and its prospects for achieving “breakeven” – that elusive goal of all fusion research, where the energy coming out of the reaction is greater than the energy it takes to make the atoms fuse.

“We were close,” Gene Meeks said of the Prime II.  “Very close….”

Gene Meeks in May, 2001 - discussing the only true "Farnsworth" fusor still extant in the world.
Gene Meeks in May, 2001 – discussing the only Farnsworth-era fusor still extant in the world. Unfortunately, it’s mostly a Hirsch design – as evidence by the closed, spherical inner sphere.

If that was the case, then what I want to know – the discussion I want to have – is: why isn’t any money being invested to revisit the Farnsworth Fusor?

Now, I could be completely off base here. Despite having founded this site almost two decades ago, I am arguably speaking from a vantage point of somebody who is only minimally knowledgeable in the field. Unlike the countless contributors who have combined their efforts over a decade-and-a-half to form the vast database that is Fusor.net, I have never built anything more complicated than a slot-car – and that was also 50 years ago.

So maybe they all know something I don’t know. Maybe the discussion is moot.  Maybe it has been proven somewhere that by the mid 1960s, Farnsworth was operating with faculties greatly diminished by decades of substance abuse.  Maybe, as some have contended, the Fusor is a dead end, but fun to experiment with.

Or maybe the the truth is closer to the story I first heard about Farnsworth and fusion, on a hillside in Santa Cruz California in the summer of 1973.

I had first heard of Philo T. Farnsworth in the “Videocity” edition of a publication called Radical Software – this edition named for San Francisco – the city where Farnsworth first demonstrated electronic video in 1927.   Later that summer I went out to the west coast to seek my fortune in the television business.  That September I went up the coast to Santa Cruz, and met a friend of the Farnsworth family. He told me an the apocryphal story he had heard from Farnsworth’s eldest son, Philo T. Farnsworth III about the day his father put aside his fusion work.  The story goes something like this:

The cathode from an actual Farnsworth Fusor, found at the museum in Rigby Idaho in July 2003.  Could this be the "missing piece" that makes the Fusor viable?
The cathode from an actual Farnsworth Fusor, found at the museum in Rigby Idaho in July 2003. Could this be the “missing piece” that makes the Fusor viable?

Imagine a young boy watching from the doorway of his father’s laboratory while the father operates an amazing machine –  a ‘star in a jar.’   The young boy watches as his father puts the machine through its paces, spinning off an eery, other-worldly light as the small synthetic star burns brightly.  And then he watches as his father – satisfied that the device worked as intended – dismantled it in such a way that it would never work again, and placed the piece that made it work on a high shelf where nobody would ever find it. 

That is, essentially, the story I first heard in the summer of 1973.

Two years later, I had the pleasure and privilege of meeting Philo T. Farnsworth III. Over the course of the following decade we became good and trusting friends and shared many amazing moments together.  After I’d know him a while, I finally told him about that story, and asked him if there was any truth to it.

“That’s a pretty good story,” Philo said, “if a bit fantastic.  But I’ll tell you this much: the patents that my father filed… are incomplete.”

In other words, something was removed from the public disclosures – the patents – that make all the difference in how the device that Farnsworth built works or doesn’t work.

Maybe the time has come to invest some small portion of the tech millions that are being poured into these new experiments to find out once and for all if the answer has been with us all along.

That’s the discussion I want to have now.

Someday... a fusion powered future.  But maybe not to the species grows up.
Someday… a fusion powered future. But maybe not until the species grows up…

Welcome to Fusor.net v3.0*

FusorHQGreetings from FusorHQ.

If you’ve made it this far, then you’ll notice things have changed considerably.  We have relocated Fusor.net to a new server host.  Everything about the site has changed.

The front page (that you are looking at now) is no longer hosted by TypePad; it is now it’s own, stand-alone, WordPress installation.

And the heart of the site – the Fusor Forums – have been converted from the platform that has served us for the past decade (called w-agora) to pretty much the industry standard for this sort of thing, phpBB.

Basically, what we have done here is throw up the frame and roof, and moved right in. Now we have to finish the walls and the trim, plug in a few appliances and hang some paintings on the walls before this is going to feel like home again.

And we’re all going to have to get used to doing some things differently.  The new site has been active for less than 24 hours as I type this, and those of us who try to keep the wheels turning here are just getting under the hood to start tuning things up. (House building… engine tuning… my mother always loved it when I mixed metaphors…).

It’s up, it’s running, but it’s a really a whole new site in many respects.

So bear with us…

And thanks to all who have helped get us this far: Tyler Christensen, Carl Willis, Frank Sans and Richard Hull.  Thanks also to Marc Druilhe, the developer of the old w-agora format, who implemented the conversion to phpBB.  And welcome aboard to Michael Lovett, my friend and a developer here in Nashville who will help with some of the UI/UX details as the new site evolves.

And thanks too to the nearly three dozens members/users of this site who contributed sufficient funds to finance this transition.  Their generosity has assured not only the successful transfer/migration of the site to its new host and platform, but is sufficient to keep the site running for another year or two, at least.

So we’re in good shape, just gotta get a few changes under our belt.

That’s all for now…

Paul Schatzkin
aka “The Perfesser”
Fusor.net Founder and Host

– – – – – – – – – – – – –

*Fusor.net v3.0?  I think the songs.com installation – which served from about 1998 to 2000, was like version 1; the very short-lived “Intranets” forum was… let’s call it v1.5.  The w-agora platform that served the past decade was v2.  So consider this Version 3.